"ALMOST" CAUCHY PROPERTY FOR THE SEQUENCE OF PARTIAL SUMS OF FOURIER SERIES OF FUNCTIONS IN L_p , p > 1

IGOR BLOSHANSKII, DENIS GRAFOV

Let 2π -periodic (in each argument) function $f \in L_1(\mathbb{T}^N)$, $\mathbb{T}^N = [-\pi, \pi)^N$, $N \ge 1$, be expanded in multiple trigonometric Fourier series $f(x) \sim \sum c_k e^{ixk}$, and $S_n(x; f)$, $n \in \mathbb{Z}_+^N$, is a rectangular partial sum of this series, and let function $g \in L_1(\mathbb{R}^N)$, $N \ge 1$, be expanded in multiple Fourier integral $g(x) \sim \int \hat{g}(\xi) e^{ix\xi} d\xi$, and $J_\alpha(x; g)$, $\alpha \in \mathbb{R}_+^N$, is a proper Fourier integral.

Suppose that g(x) = f(x) for $x \in \mathbb{T}^N$. Let us define by $R_{\alpha}(x; f, g)$ the difference $R_{\alpha}(x; f, g) = S_n(x; f) - J_{\alpha}(x; g)$, and by $R_{\alpha}(x; f)$ the difference $R_{\alpha}(x; f) = S_n(x; f) - J_{\alpha}(x; g)$, if g(x) = 0 out of \mathbb{T}^N , where $n = [\alpha] = ([\alpha_1], \dots, [\alpha_N]) \in \mathbb{Z}^N_+$ ([t] is the integral part of $t \in \mathbb{R}^1_+$). In [1] it was proved that for N = 2 and p > 1 $R_{\alpha}(x; f, g) \to 0$ as $\alpha \to \infty$ (i.e. $\min_{1 \le s \le N} \alpha_s \to \infty$) almost everywhere on \mathbb{T}^2 . In the same paper it was proved that conditions N = 2, p > 1 are essential. In particular, the function $f_0 \in \mathbb{C}(\mathbb{T}^N)$, $N \ge 3$, was constructed such that $\overline{\lim_{\alpha \to \infty}} |R_{\alpha}(x; f_0)| = +\infty$ everywhere inside \mathbb{T}^N . The question arises: how the difference $R_{\alpha}(x; f, g)$ behaves if the components n_j and α_j of vectors $n \in \mathbb{Z}^N_+$ and $\alpha \in \mathbb{R}^N_+$ are connected by relation:

$$|\alpha_j - n_j| \le const, \quad j = 1, \dots, N.$$
 (1)

The following Theorem answers this question for N = 2.

Theorem 1. For any $\alpha = (\alpha_1, \alpha_2)$, $\alpha \in \mathbb{R}^2_+$, satisfying condition (1), and for any functions g(x) and f(x) such that $g \in L_p(\mathbb{R}^2)$, $f \in L_p(\mathbb{T}^2)$, p > 1, and g(x) = f(x) for $x \in \mathbb{T}^2$,

$$\lim_{\alpha_1,\alpha_2\to\infty} R_{\alpha_1,\alpha_2}(x;f,g) = 0 \quad almost \ everywhere \ on \ \mathbb{T}^2.$$

Further, let us define $RS_{n+m}(x; f) = S_{n+m}(x; f) - S_n(x; f)$, $n, m \in \mathbb{Z}_+^N$. The following result is equivalent to Theorem 1.

Theorem 2. For any bounded sequence $\{m(n)\}, m(n) \in \mathbb{Z}^2_+, n \in \mathbb{Z}^2_+$, and for any function $f \in L_p(\mathbb{T}^2), p > 1$,

 $\lim_{n \to \infty} RS_{n+m(n)}(x; f) = 0 \quad almost \ everywhere \ on \ \mathbb{T}^2.$

Note that this estimate is true for the divergent a.e. Fourier series as well.

As we have said above, for $N \geq 3$ Theorem 1 is not true even in $\mathbb{C}(\mathbb{T}^N)$. It is not difficult to prove that result of Theorem 2 is also not true in this class. In this case, the following question arises: how the differences $R_{\alpha}(x; f, g)$ and $RS_{n+m}(x; f)$ in the classes L_p , for $N \geq 3$, behave if some of the components n_j of vector $n = [\alpha]$ are elements of (single) lacunary sequences $(\{k^{(s)}\}, k^{(s)} \in \mathbb{Z}^1_+, \text{ is a lacunary sequence if } k^{(s+1)}/k^{(s)} \geq q > 1, s = 1, 2, ...).$

Possibility to obtain new results in the case of additional restrictions on the vector $n = [\alpha]$ is connected with the fact that in the classes L_p , p > 1, the "lacunary" subsequences of partial sums of multiple Fourier series have better properties of convergence a.e. in comparison with the whole sequence $S_n(x; f)$.

The partial answers on the latter question are the following results (which, in particular, show that for $N \geq 3$ the differences $R_{\alpha}(x; f, g)$ and $RS_{n+m}(x; f)$ are not equivalent).

Theorem 3. There exists a function $f \in \mathbb{C}(\mathbb{T}^N)$, $N \ge 3$, such that for any sequence $\widetilde{\alpha} = (\alpha_3, \ldots, \alpha_N) \in \mathbb{R}^{N-2}_+$

 $\overline{\lim_{n_1, n_2, \widetilde{\alpha} \to \infty}} |R_{n_1, n_2, \widetilde{\alpha}}(x; f)| = +\infty \text{ everywhere inside } \mathbb{T}^N.$

Theorem 4. For any bounded sequence $\{m(n)\}, m(n) \in \mathbb{Z}_{+}^{2}, n = (n_{1}, n_{2}) \in \mathbb{Z}_{+}^{2}$, for any lacunary sequences $\{n_{j}^{(\lambda_{j})}\}, n_{j}^{(\lambda_{j})} \in \mathbb{Z}_{+}^{1}, \lambda_{j} = 1, 2, \ldots, j = 3, \ldots, N$, and for any function $f \in L_{p}(\mathbb{T}^{N}), p > 1, N \geq 3$, almost everywhere on \mathbb{T}^{N}

$$\lim_{n_1, n_2, \lambda_3, \dots, \lambda_N \to \infty} RS_{n_1 + m_1(n), n_2 + m_2(n), n_3^{(\lambda_3)}, \dots, n_N^{(\lambda_N)}}(x; f) = 0.$$

The work is supported by Russian Foundation for Basic Research (grant 11-01-00321).

References

 I.L.BLOSHANSKII, On equiconvergence of expansions in multiple trigonometric Fourier series and Fourier integral, Matem. zametki, 18:2 (1975), 153–168.

DEPARTMENT OF MATHEMATICAL ANALYSIS AND GEOMETRY, MOSCOW STATE REGIONAL UNIVERSITY, 105005 MOSCOW, 10A RADIO STREET, RUSSIA *E-mail address*: ig.bloshn@gmail.com, grafov.den@yandex.ru