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A function ρ : N −→ N is said to be a rank function, if it is weakly
decreasing and such that

∀ j ∈ N \ {0} : ρ(j − 1) + ρ(j + 1) ≥ 2ρ(j).

LetMn(F) be the vector space of all the n× n matrices over a field F.
One can prove that ρ : N −→ N is a rank function if and only if

∃A ∈Mρ(0)(F)∀ j ∈ N : rank(Aj) = ρ(j).

(In the sequel we write rA(j) instead of rank(Aj)). The pointwise
inequality is a partial order on the set of all the rank function.

It can be shown that if the Zariski closure of a set E ⊆ Mn(F) is
irreducible, then the set of rank functions {rA : A ∈ E} has the greatest
element [3]. If ρ is a rank function, then

Xρ = {A ∈Mρ(0)(F) : rA ≤ ρ}
is an algebraic set of matrices, referred to as a rank variety [1]. Rank
functions also appear in the Gerstenhaber-Hesselink theorem on the
closure of a nilpotent orbit.

In the talk, we will present some new and some older results on
rank functions and their applications in matrix theory and algebraic
geometry.
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