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A function p : N — N is said to be a rank function, if it is weakly
decreasing and such that

Vi e N\{0}: p(j = 1) +p(j +1) = 2p(j).
Let M,,(F) be the vector space of all the n x n matrices over a field F.
One can prove that p : N — N is a rank function if and only if

JA € M) (F)Vj € N: rank(A?) = p(4).

(In the sequel we write 74(j) instead of rank(A?)). The pointwise
inequality is a partial order on the set of all the rank function.

It can be shown that if the Zariski closure of a set & C M, (F) is
irreducible, then the set of rank functions {r4 : A € £} has the greatest
element [3]. If p is a rank function, then

X, ={A € Myo(F) : ra < p}

is an algebraic set of matrices, referred to as a rank variety [1]. Rank
functions also appear in the Gerstenhaber-Hesselink theorem on the
closure of a nilpotent orbit.

In the talk, we will present some new and some older results on
rank functions and their applications in matrix theory and algebraic
geometry.
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