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Let X be a Banach space, (Ω,Σ) be a measure space, where Ω is a set
and Σ is a σ-algebra of subsets of Ω. If m : Σ→ X is a σ-additive X-
valued measure, then the range of m is the set m(Σ) := {m(A) : A ∈
Σ}. The measure m is non-atomic if for every set A ∈ Σ with m(A) > 0,
there exist B ⊂ A,B ∈ Σ such that m(B) 6= 0 and m(A\B) 6= 0. X-
valued measure we will call Lyapunov measure if the closure of its range
is convex. And Banach space X is Lyapunov space if every X-valued
non-atomic measure is Lyapunov. The spaces lp, 1 ≤ p < ∞, p 6= 2,
and c0 are Lyapunov spaces [1].

The following result is a generalization of famous Lyapunov theorem
for Rn-valued measures [2].

Theorem. Let X be a q-concave, for some q < ∞, Banach space
with un-conditional basis, and which doesn’t contain an isomorphic
copy of l2. Then X is Lyapunov space.

The proof uses some results from [3].
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