LYAPUNOV THEOREM FOR *q*-CONCAVE BANACH SPACES

ANNA NOVIKOVA

Let X be a Banach space, (Ω, Σ) be a measure space, where Ω is a set and Σ is a σ -algebra of subsets of Ω . If $m : \Sigma \to X$ is a σ -additive Xvalued measure, then the range of m is the set $m(\Sigma) := \{m(A) : A \in \Sigma\}$. The measure m is non-atomic if for every set $A \in \Sigma$ with m(A) > 0, there exist $B \subset A, B \in \Sigma$ such that $m(B) \neq 0$ and $m(A \setminus B) \neq 0$. Xvalued measure we will call Lyapunov measure if the closure of its range is convex. And Banach space X is Lyapunov space if every X-valued non-atomic measure is Lyapunov. The spaces l_p , $1 \leq p < \infty$, $p \neq 2$, and c_0 are Lyapunov spaces [1].

The following result is a generalization of famous Lyapunov theorem for \mathbb{R}_n -valued measures [2].

Theorem. Let X be a q-concave, for some $q < \infty$, Banach space with un-conditional basis, and which doesn't contain an isomorphic copy of l_2 . Then X is Lyapunov space.

The proof uses some results from [3].

References

- V. Kadets and G. Schechtman, The Lyapunov property for 'p-valued measures, St. Petersburg Math. J. 4(5) (1993), 916-965.
- [2] A. Lyapunov, Sur les Fonctions-vecteurs complehement additives, Izv. Akad. Nauk SSSR 4 (1940), 465-478.
- [3] V. Mykhaylyuk, M. Popov, B. Randianantoanina, G. Schechtman, Narrow and l_2 -strictly singular operators from L_p , (submitted).

FACULTY OF MATHEMATICS AND COMPUTER SCIENCES, WEIZMANN INSTITUTE OF SCIENCES, 76100 REHOVOT, POB 26, ISRAEL

E-mail address: novikova.anna18@gmail.com