ON $M(a,B,c)$-IDEALS IN BANACH SPACES

KSENIA ROZHINSKAYA AND INDREK ZOLK

We say that a closed subspace Y of a Banach space X is an *ideal satisfying the $M(a,B,c)$-inequality* (in short, an $M(a,B,c)$-ideal) in X if there is a norm one projection P on X^* such that $\ker P = Y^\perp$ and

$$\|ax^* + bPx^*\| + c\|Px^*\| \leq \|x^*\| \ \forall b \in B, \forall x^* \in X^*.$$

This approach was first suggested by E. Oja and it allows us to handle well-known special cases of ideals, namely M, h, u- and $M(r,s)$-ideals (for definitions and references, see, e.g., [2]), in a more unified way.

We have developed easily verifiable equivalent conditions for a subspace of ℓ^∞_2 to be an $M(a,B,c)$-ideal.

Following what was done in [1] for $M(r,s)$-ideals, we obtain new results in a more general $M(a,B,c)$-setting. Our main results are as follows. Suppose X and Y are closed subspaces of a Banach space Z such that $X \subset Y \subset Z$. If X is an $M(a,B,c)$-ideal in Y and Y is an $M(d,E,f)$-ideal in Z, then X is an ideal satisfying a certain type of inequality in Z. Relying on this result, we show that if X is an $M(a,B,c)$-ideal in its second bidual, then X is an ideal satisfying a certain type of inequality in $X^{(2n)}$ for every $n \in \mathbb{N}$.

For illustration, we list here two corollaries of our results.

- *If X is an $M(a,B,c)$-ideal in Y and Y is an M-ideal in Z, then X is an $M(a,B,c)$-ideal in Z.*
- *If X is a u-ideal in X^{**}, then X is an $M \left(\frac{1}{2n-1}, \left\{ -\frac{2}{2n-1} \right\}, 0 \right)$-ideal in $X^{(2n)}$ for every $n \in \mathbb{N}$.*

REFERENCES

Faculty of Mathematics and Computer Science, Tartu University,
J. Liivi 2, 50409 Tartu, Estonia
E-mail address: ksenia.roz@gmail.com

Faculty of Mathematics and Computer Science, Tartu University,
J. Liivi 2, 50409 Tartu, Estonia
E-mail address: indrek.zolk@ut.ee